3 research outputs found

    English for Geodesy and Land Management Students: tutorial.

    Get PDF
    English for Geodesy and Land Management Students is the manual for the students majoring in this specialty «Geodesy and Land Management» at higher education institutions and aimed at mastering the English language for specific purposes in this domain. The manual consists of 2 parts comprising the key theoretical issues students study at their special classes. The 1st part consists of 11 units. The 2nd part consists of 14 units. Each unit is designed in the way to provide students with the possibility to practice all language skills giving them flexibility in the field of future professional sphere. In the last part of the tutorial students can find texts for supplementary reading useful for efficient independent work

    The stiffness of living tissues and its implications for tissue engineering

    No full text
    The past 20 years have witnessed ever- growing evidence that the mechanical properties of biological tissues, from nanoscale to macroscale dimensions, are fundamental for cellular behaviour and consequent tissue functionality. This knowledge, combined with previously known biochemical cues, has greatly advanced the field of biomaterial development, tissue engineering and regenerative medicine. It is now established that approaches to engineer biological tissues must integrate and approximate the mechanics, both static and dynamic, of native tissues. Nevertheless, the literature on the mechanical properties of biological tissues differs greatly in methodology, and the available data are widely dispersed. This Review gathers together the most important data on the stiffness of living tissues and discusses the intricacies of tissue stiffness from a materials perspective, highlighting the main challenges associated with engineering lifelike tissues and proposing a unified view of this as yet unreported topic. Emerging advances that might pave the way for the next decadeâ s take on bioengineered tissue stiffness are also presented, and differences and similarities between tissues in health and disease are discussed, along with various techniques for characterizing tissue stiffness at various dimensions from individual cells to organs.The authors would like to acknowledge financial support from the European Research Council, grant agreement ERC-2012-ADG 20120216-321266 (project ComplexiTE). C.F.G. acknowledges scholarship grant no. PD/BD/135253/2017 from Fundação para a Ciência e Tecnologia (FCT). The authors also thank the peer-reviewers for the constructive comments and suggestions that helped to shape this manuscript
    corecore